Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impact of Classical Strain Improvement of Penicillium rubens on Amino Acid Metabolism during β-Lactam Production.

Identifieur interne : 000164 ( Main/Exploration ); précédent : 000163; suivant : 000165

Impact of Classical Strain Improvement of Penicillium rubens on Amino Acid Metabolism during β-Lactam Production.

Auteurs : Min Wu [Pays-Bas] ; Ciprian G. Crismaru [Pays-Bas] ; Oleksandr Salo [Pays-Bas] ; Roel A L. Bovenberg [Pays-Bas] ; Arnold J M. Driessen [Pays-Bas]

Source :

RBID : pubmed:31757830

Descripteurs français

English descriptors

Abstract

To produce high levels of β-lactams, the filamentous fungus Penicillium rubens (previously named Penicillium chrysogenum) has been subjected to an extensive classical strain improvement (CSI) program during the last few decades. This has led to the accumulation of many mutations that were spread over the genome. Detailed analysis reveals that several mutations targeted genes that encode enzymes involved in amino acid metabolism, in particular biosynthesis of l-cysteine, one of the amino acids used for β-lactam production. To examine the impact of the mutations on enzyme function, the respective genes with and without the mutations were cloned and expressed in Escherichia coli, purified, and enzymatically analyzed. Mutations severely impaired the activities of a threonine and serine deaminase, and this inactivates metabolic pathways that compete for l-cysteine biosynthesis. Tryptophan synthase, which converts l-serine into l-tryptophan, was inactivated by a mutation, whereas a mutation in 5-aminolevulinate synthase, which utilizes glycine, was without an effect. Importantly, CSI caused increased expression levels of a set of genes directly involved in cysteine biosynthesis. These results suggest that CSI has resulted in improved cysteine biosynthesis by the inactivation of the enzymatic conversions that directly compete for resources with the cysteine biosynthetic pathway, consistent with the notion that cysteine is a key component during penicillin production.IMPORTANCEPenicillium rubens is an important industrial producer of β-lactam antibiotics. High levels of penicillin production were enforced through extensive mutagenesis during a classical strain improvement (CSI) program over 70 years. Several mutations targeted amino acid metabolism and resulted in enhanced l-cysteine biosynthesis. This work provides a molecular explanation for the interrelation between secondary metabolite production and amino acid metabolism and how classical strain improvement has resulted in improved production strains.

DOI: 10.1128/AEM.01561-19
PubMed: 31757830
PubMed Central: PMC6974646


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Impact of Classical Strain Improvement of
<i>Penicillium rubens</i>
on Amino Acid Metabolism during β-Lactam Production.</title>
<author>
<name sortKey="Wu, Min" sort="Wu, Min" uniqKey="Wu M" first="Min" last="Wu">Min Wu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Crismaru, Ciprian G" sort="Crismaru, Ciprian G" uniqKey="Crismaru C" first="Ciprian G" last="Crismaru">Ciprian G. Crismaru</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Salo, Oleksandr" sort="Salo, Oleksandr" uniqKey="Salo O" first="Oleksandr" last="Salo">Oleksandr Salo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bovenberg, Roel A L" sort="Bovenberg, Roel A L" uniqKey="Bovenberg R" first="Roel A L" last="Bovenberg">Roel A L. Bovenberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>DSM Biotechnology Centre, Delft, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>DSM Biotechnology Centre, Delft</wicri:regionArea>
<wicri:noRegion>Delft</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Driessen, Arnold J M" sort="Driessen, Arnold J M" uniqKey="Driessen A" first="Arnold J M" last="Driessen">Arnold J M. Driessen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands a.j.m.driessen@rug.nl.</nlm:affiliation>
<country wicri:rule="url">Pays-Bas</country>
<wicri:regionArea>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31757830</idno>
<idno type="pmid">31757830</idno>
<idno type="doi">10.1128/AEM.01561-19</idno>
<idno type="pmc">PMC6974646</idno>
<idno type="wicri:Area/Main/Corpus">000283</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000283</idno>
<idno type="wicri:Area/Main/Curation">000283</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000283</idno>
<idno type="wicri:Area/Main/Exploration">000283</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Impact of Classical Strain Improvement of
<i>Penicillium rubens</i>
on Amino Acid Metabolism during β-Lactam Production.</title>
<author>
<name sortKey="Wu, Min" sort="Wu, Min" uniqKey="Wu M" first="Min" last="Wu">Min Wu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Crismaru, Ciprian G" sort="Crismaru, Ciprian G" uniqKey="Crismaru C" first="Ciprian G" last="Crismaru">Ciprian G. Crismaru</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Salo, Oleksandr" sort="Salo, Oleksandr" uniqKey="Salo O" first="Oleksandr" last="Salo">Oleksandr Salo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bovenberg, Roel A L" sort="Bovenberg, Roel A L" uniqKey="Bovenberg R" first="Roel A L" last="Bovenberg">Roel A L. Bovenberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>DSM Biotechnology Centre, Delft, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>DSM Biotechnology Centre, Delft</wicri:regionArea>
<wicri:noRegion>Delft</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
<author>
<name sortKey="Driessen, Arnold J M" sort="Driessen, Arnold J M" uniqKey="Driessen A" first="Arnold J M" last="Driessen">Arnold J M. Driessen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands a.j.m.driessen@rug.nl.</nlm:affiliation>
<country wicri:rule="url">Pays-Bas</country>
<wicri:regionArea>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen</wicri:regionArea>
<placeName>
<settlement type="city">Groningue</settlement>
<region nuts="2" type="province">Groningue (province)</region>
</placeName>
<orgName type="university">Université de Groningue</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Biosynthetic Pathways (MeSH)</term>
<term>Cysteine (biosynthesis)</term>
<term>Escherichia coli (genetics)</term>
<term>Microorganisms, Genetically-Modified (genetics)</term>
<term>Mutation (MeSH)</term>
<term>Penicillins (biosynthesis)</term>
<term>Penicillium chrysogenum (genetics)</term>
<term>Penicillium chrysogenum (metabolism)</term>
<term>beta-Lactams (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Cystéine (biosynthèse)</term>
<term>Escherichia coli (génétique)</term>
<term>Micro-organismes génétiquement modifiés (génétique)</term>
<term>Mutation (MeSH)</term>
<term>Penicillium chrysogenum (génétique)</term>
<term>Penicillium chrysogenum (métabolisme)</term>
<term>Pénicillines (biosynthèse)</term>
<term>Voies de biosynthèse (MeSH)</term>
<term>bêta-Lactames (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Cysteine</term>
<term>Penicillins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>beta-Lactams</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Cystéine</term>
<term>Pénicillines</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
<term>Microorganisms, Genetically-Modified</term>
<term>Penicillium chrysogenum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Escherichia coli</term>
<term>Micro-organismes génétiquement modifiés</term>
<term>Penicillium chrysogenum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Penicillium chrysogenum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Penicillium chrysogenum</term>
<term>bêta-Lactames</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biosynthetic Pathways</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Mutation</term>
<term>Voies de biosynthèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To produce high levels of β-lactams, the filamentous fungus
<i>Penicillium rubens</i>
(previously named
<i>Penicillium chrysogenum</i>
) has been subjected to an extensive classical strain improvement (CSI) program during the last few decades. This has led to the accumulation of many mutations that were spread over the genome. Detailed analysis reveals that several mutations targeted genes that encode enzymes involved in amino acid metabolism, in particular biosynthesis of l-cysteine, one of the amino acids used for β-lactam production. To examine the impact of the mutations on enzyme function, the respective genes with and without the mutations were cloned and expressed in
<i>Escherichia coli</i>
, purified, and enzymatically analyzed. Mutations severely impaired the activities of a threonine and serine deaminase, and this inactivates metabolic pathways that compete for l-cysteine biosynthesis. Tryptophan synthase, which converts l-serine into l-tryptophan, was inactivated by a mutation, whereas a mutation in 5-aminolevulinate synthase, which utilizes glycine, was without an effect. Importantly, CSI caused increased expression levels of a set of genes directly involved in cysteine biosynthesis. These results suggest that CSI has resulted in improved cysteine biosynthesis by the inactivation of the enzymatic conversions that directly compete for resources with the cysteine biosynthetic pathway, consistent with the notion that cysteine is a key component during penicillin production.
<b>IMPORTANCE</b>
<i>Penicillium rubens</i>
is an important industrial producer of β-lactam antibiotics. High levels of penicillin production were enforced through extensive mutagenesis during a classical strain improvement (CSI) program over 70 years. Several mutations targeted amino acid metabolism and resulted in enhanced l-cysteine biosynthesis. This work provides a molecular explanation for the interrelation between secondary metabolite production and amino acid metabolism and how classical strain improvement has resulted in improved production strains.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31757830</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>86</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>01</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Impact of Classical Strain Improvement of
<i>Penicillium rubens</i>
on Amino Acid Metabolism during β-Lactam Production.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01561-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.01561-19</ELocationID>
<Abstract>
<AbstractText>To produce high levels of β-lactams, the filamentous fungus
<i>Penicillium rubens</i>
(previously named
<i>Penicillium chrysogenum</i>
) has been subjected to an extensive classical strain improvement (CSI) program during the last few decades. This has led to the accumulation of many mutations that were spread over the genome. Detailed analysis reveals that several mutations targeted genes that encode enzymes involved in amino acid metabolism, in particular biosynthesis of l-cysteine, one of the amino acids used for β-lactam production. To examine the impact of the mutations on enzyme function, the respective genes with and without the mutations were cloned and expressed in
<i>Escherichia coli</i>
, purified, and enzymatically analyzed. Mutations severely impaired the activities of a threonine and serine deaminase, and this inactivates metabolic pathways that compete for l-cysteine biosynthesis. Tryptophan synthase, which converts l-serine into l-tryptophan, was inactivated by a mutation, whereas a mutation in 5-aminolevulinate synthase, which utilizes glycine, was without an effect. Importantly, CSI caused increased expression levels of a set of genes directly involved in cysteine biosynthesis. These results suggest that CSI has resulted in improved cysteine biosynthesis by the inactivation of the enzymatic conversions that directly compete for resources with the cysteine biosynthetic pathway, consistent with the notion that cysteine is a key component during penicillin production.
<b>IMPORTANCE</b>
<i>Penicillium rubens</i>
is an important industrial producer of β-lactam antibiotics. High levels of penicillin production were enforced through extensive mutagenesis during a classical strain improvement (CSI) program over 70 years. Several mutations targeted amino acid metabolism and resulted in enhanced l-cysteine biosynthesis. This work provides a molecular explanation for the interrelation between secondary metabolite production and amino acid metabolism and how classical strain improvement has resulted in improved production strains.</AbstractText>
<CopyrightInformation>Copyright © 2020 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Min</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crismaru</LastName>
<ForeName>Ciprian G</ForeName>
<Initials>CG</Initials>
<AffiliationInfo>
<Affiliation>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Salo</LastName>
<ForeName>Oleksandr</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bovenberg</LastName>
<ForeName>Roel A L</ForeName>
<Initials>RAL</Initials>
<AffiliationInfo>
<Affiliation>DSM Biotechnology Centre, Delft, The Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Driessen</LastName>
<ForeName>Arnold J M</ForeName>
<Initials>AJM</Initials>
<AffiliationInfo>
<Affiliation>Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands a.j.m.driessen@rug.nl.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010406">Penicillins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047090">beta-Lactams</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053898" MajorTopicYN="N">Biosynthetic Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000074041" MajorTopicYN="N">Microorganisms, Genetically-Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="Y">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010406" MajorTopicYN="N">Penicillins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010408" MajorTopicYN="N">Penicillium chrysogenum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047090" MajorTopicYN="N">beta-Lactams</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Penicillium rubens</Keyword>
<Keyword MajorTopicYN="Y">amino acid metabolism</Keyword>
<Keyword MajorTopicYN="Y">classical strain improvement</Keyword>
<Keyword MajorTopicYN="Y">cysteine biosynthesis</Keyword>
<Keyword MajorTopicYN="Y">mutation</Keyword>
<Keyword MajorTopicYN="Y">penicillin production</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31757830</ArticleId>
<ArticleId IdType="pii">AEM.01561-19</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.01561-19</ArticleId>
<ArticleId IdType="pmc">PMC6974646</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1973 Feb 10;248(3):1032-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4630852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Oct;26(10):1161-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18820685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2000 Aug;64(8):1628-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10993149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2015 Jun;10(6):845-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25950237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 30;279(31):32418-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Jun 26;40(25):7446-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11412097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Oct;76(2):285-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Nov 15;263(32):16934-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3053700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 1948 Dec;70(12):4238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18105978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2010 Jun;9(6):1182-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20154335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1988 Jun;171(2):266-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3044186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 Jul 15;390(1):85-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8706836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Feb;11(2):238-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22158714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2012 Feb;7(2):225-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22057844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Jun;51(347):985-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10948226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2014 Jul 15;426(14):2692-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24810707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Jul;263(1):212-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10429206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1988 Dec;7(7):477-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24240395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6200-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7597101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Med. 2013 May;31(5):1229-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23483228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1967 Aug;104(2):627-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6048802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Dec;181(23):7228-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10572125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Feb;42(2):154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15670713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2010 May;32(5):422-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20414900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2005 Mar;14(3):791-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15689518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Nov 14;16:937</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26572918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1979 Dec;102(1):167-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">391563</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
<region>
<li>Groningue (province)</li>
</region>
<settlement>
<li>Groningue</li>
</settlement>
<orgName>
<li>Université de Groningue</li>
</orgName>
</list>
<tree>
<country name="Pays-Bas">
<region name="Groningue (province)">
<name sortKey="Wu, Min" sort="Wu, Min" uniqKey="Wu M" first="Min" last="Wu">Min Wu</name>
</region>
<name sortKey="Bovenberg, Roel A L" sort="Bovenberg, Roel A L" uniqKey="Bovenberg R" first="Roel A L" last="Bovenberg">Roel A L. Bovenberg</name>
<name sortKey="Bovenberg, Roel A L" sort="Bovenberg, Roel A L" uniqKey="Bovenberg R" first="Roel A L" last="Bovenberg">Roel A L. Bovenberg</name>
<name sortKey="Crismaru, Ciprian G" sort="Crismaru, Ciprian G" uniqKey="Crismaru C" first="Ciprian G" last="Crismaru">Ciprian G. Crismaru</name>
<name sortKey="Driessen, Arnold J M" sort="Driessen, Arnold J M" uniqKey="Driessen A" first="Arnold J M" last="Driessen">Arnold J M. Driessen</name>
<name sortKey="Salo, Oleksandr" sort="Salo, Oleksandr" uniqKey="Salo O" first="Oleksandr" last="Salo">Oleksandr Salo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000164 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000164 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31757830
   |texte=   Impact of Classical Strain Improvement of Penicillium rubens on Amino Acid Metabolism during β-Lactam Production.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31757830" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020